Acoustic Echo Cancellation with the Normalized Sign-Error Least Mean Squares Algorithm and Deep Residual Echo Suppression

Author:

Shachar Eran1,Cohen Israel1ORCID,Berdugo Baruch1

Affiliation:

1. Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion–Israel Institute of Technology, Technion City, Haifa 3200003, Israel

Abstract

This paper presents an echo suppression system that combines a linear acoustic echo canceller (AEC) with a deep complex convolutional recurrent network (DCCRN) for residual echo suppression. The filter taps of the AEC are adjusted in subbands by using the normalized sign-error least mean squares (NSLMS) algorithm. The NSLMS is compared with the commonly-used normalized least mean squares (NLMS), and the combination of each with the proposed deep residual echo suppression model is studied. The utilization of a pre-trained deep-learning speech denoising model as an alternative to a residual echo suppressor (RES) is also studied. The results showed that the performance of the NSLMS is superior to that of the NLMS in all settings. With the NSLMS output, the proposed RES achieved better performance than the larger pre-trained speech denoiser model. More notably, the denoiser performed considerably better on the NSLMS output than on the NLMS output, and the performance gap was greater than the respective gap when employing the RES, indicating that the residual echo in the NSLMS output was more akin to noise than speech. Therefore, when little data is available to train an RES, a pre-trained speech denoiser is a viable alternative when employing the NSLMS for the preceding linear AEC.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient High-Performance Bark-Scale Neural Network for Residual Echo and Noise Suppression;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. Acoustic Echo Cancellation Algorithm Based on Kalman Filtering of Skewed Observation Noise;IEEE Sensors Journal;2024-03-01

3. Convergence and Performance Analysis of Classical, Hybrid, and Deep Acoustic Echo Control;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3