Compact and Low-Profile UWB Antenna Based on Graphene-Assembled Films for Wearable Applications

Author:

Fang Ran,Song Rongguo,Zhao Xin,Wang Zhe,Qian Wei,He DapingORCID

Abstract

In this article, a graphene-assembled film (GAF)-based compact and low-profile ultra-wide bandwidth (UWB) antenna is presented and tested for wearable applications. The highly conductive GAFs (~106 S/m) together with the flexible ceramic substrate ensure the flexibility and robustness of the antenna, which are two main challenges in designing wearable antennas. Two H-shaped slots are introduced on a coplanar-waveguide (CPW) feeding structure to adjust the current distribution and thus improve the antenna bandwidth. The compact GAF antenna with dimensions of 32 × 52 × 0.28 mm3 provides an impedance bandwidth of 60% (4.3–8.0 GHz) in simulation. The UWB characteristics are further confirmed by on-body measurements and show a bending insensitive bandwidth of ~67% (4.1–8.0 GHz), with the maximum gain at 7.45 GHz being 3.9 dBi and 4.1 dBi in its flat state and bent state, respectively. Our results suggest that the proposed antenna functions properly in close proximity to a human body and can sustain repetitive bending, which make it well suited for applications in wearable devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3