Automatic Speech Recognition Performance Improvement for Mandarin Based on Optimizing Gain Control Strategy

Author:

Wang DeshengORCID,Wei YangjieORCID,Zhang Ke,Ji DongORCID,Wang Yi

Abstract

Automatic speech recognition (ASR) is an essential technique of human–computer interactions; gain control is a commonly used operation in ASR. However, inappropriate gain control strategies can lead to an increase in the word error rate (WER) of ASR. As there is a current lack of sufficient theoretical analyses and proof of the relationship between gain control and WER, various unconstrained gain control strategies have been adopted on realistic ASR systems, and the optimal gain control with respect to the lowest WER, is rarely achieved. A gain control strategy named maximized original signal transmission (MOST) is proposed in this study to minimize the adverse impact of gain control on ASR systems. First, by modeling the gain control strategy, the quantitative relationship between the gain control strategy and the ASR performance was established using the noise figure index. Second, through an analysis of the quantitative relationship, an optimal MOST gain control strategy with minimal performance degradation was theoretically deduced. Finally, comprehensive comparative experiments on a Mandarin dataset show that the proposed MOST gain control strategy can significantly reduce the WER of the experimental ASR system, with a 10% mean absolute WER reduction at −9 dB gain.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoding and Analysing Consumer Feedback for Companies and Goods using Machine Learning;2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS);2023-02-02

2. Non-Autoregressive End-to-End Neural Modeling for Automatic Pronunciation Error Detection;Applied Sciences;2022-12-22

3. Use Brain-Like Audio Features to Improve Speech Recognition Performance;Journal of Sensors;2022-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3