Research on Measurement Principle and Key Measuring Devices of Pressure Change Rate for Electronically Controlled Pneumatic Brake of Commercial Vehicle Based on Poiseuille’s Law

Author:

Hu Jian,Yan Min,Yang Rui,Yang FanORCID,Li GangyanORCID

Abstract

For intelligence brakes in the electronic pneumatic brake system of commercial vehicles, the pressure change rate is used as the key control parameter and evaluation index. This can improve the brake safety, stability, and ride comfort of the vehicle. The real-time detection of the brake pressure change rate for commercial vehicles is the premise for realizing the accurate control of brake pressure change rate. Based on Poiseuille’s law, an efficient measurement method of brake pressure change rate is proposed for commercial vehicles, and a new measuring device with an isothermal container and laminar flow resistance tube as the core components is designed. Through thermal insulation performance tests, flow resistance tests and measurement accuracy tests, combined with simulations, the effects of structural parameters and copper wire filling density on the performance of the isothermal container are analyzed, and these key parameters are optimized to improve the thermal insulation performance. A tubular laminar flow resistance tube composed of 304 stainless steel capillaries in parallel is designed. The influence mechanism of core parameters such as the number, radius, and length of laminar flow channels on its performance is studied, and the optimal parameter array is selected to optimize its performance. The experimental platform for measuring brake pressure change rate is constructed. By comparing the measurement curve of brake pressure change rate under simulation and experiment, the correctness and effectiveness of the pressure change rate measurement principle and the key components for electronically controlled pneumatic brakes of commercial vehicles are verified to meet engineering requirements.

Funder

China Postdoctoral Science Foundation funded project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3