Integrated in Silico and Experimental Approach towards the Design of a Novel Recombinant Protein Containing an Anti-HER2 scFv

Author:

Santos Joana,Cardoso Miguel,Moreira Irina S.ORCID,Gonçalves João,Correia João D. G.ORCID,Verde Sandra CaboORCID,Melo RitaORCID

Abstract

Biological therapies, such as recombinant proteins, are nowadays amongst the most promising approaches towards precision medicine. One of the most innovative methodologies currently available aimed at improving the production yield of recombinant proteins with minimization of costs relies on the combination of in silico studies to predict and deepen the understanding of the modified proteins with an experimental approach. The work described herein aims at the design and production of a biomimetic vector containing the single-chain variable domain fragment (scFv) of an anti-HER2 antibody fragment as a targeting motif fused with HIV gp41. Molecular modeling and docking studies were performed to develop the recombinant protein sequence. Subsequently, the DNA plasmid was produced and HEK-293T cells were transfected to evaluate the designed vector. The obtained results demonstrated that the plasmid construction is robust and can be expressed in the selected cell line. The multidisciplinary integrated in silico and experimental strategy adopted for the construction of a recombinant protein which can be used in HER2+-targeted therapy paves the way towards the production of other therapeutic proteins in a more cost-effective way.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3