DFT Studies of Selected Epoxies with Mesogenic Units–Impact of Molecular Structure on Electro-Optical Response

Author:

Włodarska MagdalenaORCID,Mossety-Leszczak BeataORCID

Abstract

Theoretical studies of molecular structure and electric charge distribution were carried out for three epoxy compounds with different mesogenic cores. The compounds exhibit a nematic phase and form polymer networks that are potential bases for various composites. Results were compared to analogous materials with non-polar chains. A customized process involving geometry optimization of a series of conformations was employed to greatly increase likelihood of reaching global energy minimum for each molecule. All computations used Density Functional Theory (DFT) electron correlation model with the B3LYP hybrid functional. Molecular structure calculations yielded several parameters, including the magnitude and direction of the dipole moment, polarizability (α), first hyperpolarizability (β), and highest-occupied/lowest-unoccupied molecular orbital (HOMO-LUMO) energies. These parameters can help predict electronic properties of the nematic phase and the polymer network and assess their predisposition for application in electrooptical devices. In particular, the magnitude and direction of the dipole moment determine molecular alignment of liquid crystal phases in electric field, which enables controlling molecular order also in cured networks. Theoretical results were supplemented with observations of the nematics and their behavior in electric field. It was demonstrated for the studied compounds that a change in aliphatic chain polarity helps preserve and reinforce perpendicular alignment of molecules induced by electric field.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3