Abstract
In this study, we evaluated the improved memristive switching characteristics of hydrogen silsesquioxane (HSQ) nanocomposites embedded with a single-walled carbon nanotube (SWCNT) random network. A low-temperature solution process was implemented using a flexible memristor device on a polyethylene naphthalate (PEN) substrate. The difference in the resistive switching (RS) behavior due to the presence of the SWCNT random network was analyzed by the current transport mechanism. Such a random network not only improves the RS operation but also facilitates a stable multilevel RS performance. The multiple-resistance states exhibited highly reliable nonvolatile retention properties over 104 s at room temperature (25 °C) and at a high temperature (85 °C), showing the possibility of an analog synaptic weight modulation. Consequently, the gradual weight potentiation/depression was realized through 3 × 102 synaptic stimulation pulses. These findings suggest that the embedded SWCNT random network can improve the synaptic weight modulation characteristics with high stability for an artificial synapse and hence can be used in future neuromorphic circuits.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korean government
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献