Work Hardening of Heat-Treated AlSi10Mg Alloy Manufactured by Selective Laser Melting: Effects of Layer Thickness and Hatch Spacing

Author:

Ghio EmanueleORCID,Cerri EmanuelaORCID

Abstract

The present study analyzed the microstructure and the mechanical properties of AlSi10Mg SLMed bars (10 × 10 × 300 mm) and billets (10 × 100 × 300 mm) before and after the direct aging at 200 °C for 4 h and the T6 heat treatment. The discussed results are compared to those obtained by the AlSi10Mg samples manufactured with the same geometry but using different process parameters (layer thickness higher than 40 μm and a hatch spacing lower than 100 μm) and also through the Quality Index (QI). These work conditions allow the obtaining of a microstructural variation and different tensile properties in as-built top samples. In both batches, the cycle time was 45 h and together with the preheated build platform at 150 °C, induced an increase of UTS (Ultimate Tensile Strength) and yield strength on the bottom rather than the top samples due to the aging phenomena. Upon completion of the direct aging heat treatment, the effects induced by the platform were cancelled, keeping a full cellular microstructure that characterized the as-built SLMed (Selective Laser Melted) samples. Moreover, the Considère criterion and the work hardening analysis showed that the failure occurs after the necking formation in some of the T6 heat-treated samples. In this last case, the Si eutectic network globularized into Si particles, causing a decrease of UTS (from around 400 MPa to 290 MPa) in favour of an increase of ductility up to 15% and reaching a QI in the range 400 ÷ 450 MPa. These values place these samples between the high-quality aluminium cast alloy and T6 heat-treated ones.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3