Characterization and Cytotoxicity Comparison of Silver- and Silica-Based Nanostructures

Author:

Adamska ElżbietaORCID,Niska KarolinaORCID,Wcisło AnnaORCID,Grobelna BeataORCID

Abstract

Core-shell structures are the most common type of composite material nanostructures due to their multifunctional properties. Silver nanoparticles show broad antimicrobial activity, but the safety of their utilization still remains an issue to tackle. In many applications, the silver core is coated with inorganic shell to reduce the metal toxicity. This article presents the synthesis of various materials based on silver and silica nanoparticles, including SiO2@Ag, Ag@SiO2, and sandwich nanostructures—Ag@SiO2@Ag—and the morphology of these nanomaterials based on transmission electron microscopy (TEM), UV-Vis spectroscopy, and FT-IR spectroscopy. Moreover, we conducted the angle measurements due to the strong relationship between the level of surface wettability and cell adhesion efficiency. The main aim of the study was to determine the cytotoxicity of the obtained materials against two types of human skin cells—keratinocytes (HaCaT) and fibroblasts (HDF). We found that among all the obtained structures, SiO2@Ag and Ag@SiO2 showed the lowest cell toxicity and very high half-maximal inhibitory concentration. Moreover, the measurements of the contact angle showed that Ag@SiO2 nanostructures were different from other materials due to their superhydrophilic nature. The novel approach presented here shows the promise of implementing core-shell type nanomaterials in skin-applied cosmetic or medical products.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3