Abstract
Microwave sensors are principally sensitive to effective permittivity, and hence not selective to a specific material under test (MUT). In this work, a highly compact microwave planar sensor based on zeroth-order resonance is designed to operate at three distant frequencies of 3.5, 4.3, and 5 GHz, with the size of only λg−min/8 per resonator. This resonator is deployed to characterize liquid mixtures with one desired MUT (here water) combined with an interfering material (e.g., methanol, ethanol, or acetone) with various concentrations (0%:10%:100%). To achieve a sensor with selectivity to water, a convolutional neural network (CNN) is used to recognize different concentrations of water regardless of the host medium. To obtain a high accuracy of this classification, Style-GAN is utilized to generate a reliable sensor response for concentrations between water and the host medium (methanol, ethanol, and acetone). A high accuracy of 90.7% is achieved using CNN for selectively discriminating water concentrations.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献