Design of Robust Integral Terminal Sliding Mode Controllers with Exponential Reaching Laws for Solar PV and BESS-Based DC Microgrids with Uncertainties

Author:

Yeasmin Sabrina,Roy Tushar KantiORCID,Ghosh Subarto KumarORCID

Abstract

In this paper, an integral terminal sliding mode controller (ITSMC) based on a modified exponential reaching law (MERL) is developed for providing large-signal DC-bus voltage stability while smoothing power flow in DC microgrids (DCMGs). It is worth mentioning that this control approach is not employed in DCMG applications yet to adjust the DC-bus voltage while preserving power balance. The proposed DCMG is made up of a solar photovoltaic (PV) unit, a battery energy storage system (BESS), and DC loads. A DC-DC boost converter (DDBC) and a bidirectional DC-DC converter (BDDC) are employed to connect the solar PV and BESS, respectively, with the DC-bus, which not only controls the output power of these units but also regulates the DC-bus voltage. First, a detailed dynamical model including external disturbances is developed for each component, i.e., the solar PV and BESS. Then, the proposed control approach is employed on these units to get their corresponding control signals. Afterward, the overall stability of each unit is ensured using the Lyapunov stability theory. Moreover, to ensure the robustness of the proposed controller, external disturbances are also bounded based on the value of user-defined constants. Finally, simulation results are used to evaluate the effectiveness of the proposed control approach in a variety of operational scenarios. Additionally, simulation results of the proposed control strategy are compared to those of existing controllers to demonstrate its superiority.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3