Intercropping of Cauliflower with Lettuce Is More Effective for Sustainable Fertilizer Management and Minimizing Environmental Risks

Author:

Turan MetinORCID,Erenler Seda,Ekinci Melek,Yildirim ErtanORCID,Argin SanemORCID

Abstract

Intercropping systems are one of the sustainable agricultural models as they play an important role in protecting soil fertility, efficient use of resources, maintaining stable yields, and reducing the effectiveness of diseases and pests. The aim of this study was to investigate the effects of intercropping (IC) cauliflower (Brassica oleracea L. var. botrytis) with leaf lettuce (Lactuca sativa L. var. crispa) on the yield and quality parameters of cauliflower and to evaluate the overall productivity of the system under different nitrogen fertilization rates (160, 200, and 240 kg N ha−1). Our results showed that the leaf chlorophyll value (SPAD), plant weight, leaf weight, head diameter, head height, head weight, and total yield of cauliflower were found to increase as the nitrogen dose increased in both the monocropping (MC) and IC systems. The most efficient nitrogen fertilizer doses for cauliflower were 234.7 kg ha−1 for MC and 176.6 kg ha−1 for IC, respectively. When the intercropping system was used the total yield (cauliflower and lettuce) was higher than the yield of cauliflower (MC) for the same total area and fertilizer amount. The land equivalent ratio (LER) values were greater than 1 in the intercropping system at all fertilization rates, which indicated that the IC system was more productive than the MC system for the same unit of land. Our findings also showed that intercropping was an effective method to increase fertilizer use efficiency and the soil organic matter, nitrogen content, plant available P, K, Mg, Zn, Fe, Mn, and Cu. In conclusion, while intercropping cauliflower with lettuce did not adversely affect the yield of cauliflower, it enabled harvesting more plants (cauliflower and lettuce) from the same land area by using the same amount of fertilizer, which makes intercropping a sustainable, economical, and ecological model that increases the land-use and fertilizer-use efficiencies.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference43 articles.

1. Intercropping systems in sustainable agriculture;Yildirim;Süleyman Demirel Univ. J. Fac. Agric.,2017

2. Human overpopulation and food security: Challenges for the agriculture sustainability;Singh,2019

3. Interspecies competition, growth and yield in barley-peanut intercropping;Awal;Asian J. Plant Sci.,2007

4. Intercropping soybean and palisade grass for enhanced land use efficiency and revenue in a no till system

5. Review on Maize based intercropping;Thayamini;J. Agron.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3