Control Strategy for Offshore Wind Farms with DC Collection System Based on Series-Connected Diode Rectifier

Author:

Xie LijunORCID,Cheng FanORCID,Wu Jing

Abstract

The DR-HVDC (Diode rectifier-based HVDC) transmission topology was recently proposed for integration on large offshore wind farms due to its low investment cost and high reliability. To further reduce the investment, a DC collection topology based on the series-connected diode rectifiers (DR) is proposed, where no offshore platform is needed. However, units of series-connected topology (SCU) show coupling issues, such as overvoltage, energy curtailment, and fault isolation. First, the coupling mechanism is analyzed, and a suitable operation mode for SCUs is selected to ensure the safe operation of the DC system. Then, the linear relationship of active power and output DC current and DC voltage of SCUs is analyzed, and a novel coordinate control strategy for DC wind farms is proposed, where an onshore converter adapts a DC current controller and wind turbines adapt a mediate output voltage control strategy. The mediate output voltage control strategy includes a triple loop with power loop, mediate output voltage loop, and current loop. Also, the DC open line fault, DC grounding fault, and AC grounding fault of the onshore grid are investigated, and a protection strategy is proposed. A 160 MW wind farm with a DR-SCU DC collection system is built in PSCAD/EMTDC to verify the validity of the proposed control strategy under unequal wind speeds, DC fault, and onshore AC fault, and the results validate the performance of the proposed strategy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Series-Connected Novel Large-Scale Offshore Wind Power All-DC System with Fault Blocking Capability;Electronics;2024-05-15

2. Triple Three-Phase Diode Rectifier-Connected Wound Rotor Non-Overlap-Winding Synchronous Generator for DC Grid Wind Turbine Systems;2023 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2023 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM);2023-09-01

3. A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems;Sustainability;2022-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3