Abstract
The manufacture of mineral N fertilisers by the Haber–Bosch process is highly energy-consuming. The nutrient recovery technologies from wastes through low-cost processes will improve the sustainability of the agricultural systems. This work aimed to assess the suitability of the gas-permeable membrane (GPM) technology to recover N from an anaerobic digestate and test the agronomic behaviour of the ammonium sulphate solution (ASS) obtained. About 62% of the total ammonia nitrogen removed from digestate using GPM was recovered, producing an ASS with 14,889 ± 2324 mg N L−1, which was more than six-fold higher than in digestate. The ASS agronomic behaviour was evaluated by a pot experiment with triticale as a plant test for 34 days in a growth chamber. Compared with the triticale fertilised with the Hoagland solution (Hoag), the ASS provided significantly higher biomass production (+29% dry matter), N uptake (+22%), and higher N agronomic efficiency 3.80 compared with 1.81 mg DM mg−1N in Hoag, and a nitrogen fertiliser replacement value of 133%. These increases can be due to a biostimulant effect provided by the organic compounds of the ASS as assessed by the FT-Raman spectroscopy. The ASS can be considered a bio-based mineral N fertiliser with a biostimulant effect.
Funder
Fundação para a Ciência e Tecnologia
National Institute of Research and Agro-Food Technology (INIA) and co-financed with FEDER funds
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献