How to Improve the Reproducibility, Replicability, and Extensibility of Remote Sensing Research

Author:

Kedron PeterORCID,Frazier Amy E.ORCID

Abstract

The field of remote sensing has undergone a remarkable shift where vast amounts of imagery are now readily available to researchers. New technologies, such as uncrewed aircraft systems, make it possible for anyone with a moderate budget to gather their own remotely sensed data, and methodological innovations have added flexibility for processing and analyzing data. These changes create both the opportunity and need to reproduce, replicate, and compare remote sensing methods and results across spatial contexts, measurement systems, and computational infrastructures. Reproducing and replicating research is key to understanding the credibility of studies and extending recent advances into new discoveries. However, reproducibility and replicability (R&R) remain issues in remote sensing because many studies cannot be independently recreated and validated. Enhancing the R&R of remote sensing research will require significant time and effort by the research community. However, making remote sensing research reproducible and replicable does not need to be a burden. In this paper, we discuss R&R in the context of remote sensing and link the recent changes in the field to key barriers hindering R&R while discussing how researchers can overcome those barriers. We argue for the development of two research streams in the field: (1) the coordinated execution of organized sequences of forward-looking replications, and (2) the introduction of benchmark datasets that can be used to test the replicability of results and methods.

Funder

the U.S. National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference85 articles.

1. Yang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H., and Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens., 2022. 14.

2. Shi, W., Zhang, M., Zhang, R., Chen, S., and Zhan, Z. Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sens., 2020. 12.

3. Knowledge discovery from remote sensing images: A review;Wang;WIREs Data Min. Knowl. Discov.,2020

4. Jupyter, P., Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., Holdgraf, C., Kelley, K., Nalvarte, G., Osheroff, A., Binder 2.0—Reproducible, interactive, sharable environments for science at scale. Proceedings of the 17th Python in Science Conference.

5. Nüst, D. Reproducibility Service for Executable Research Compendia: Technical Specifications and Reference Implementation. 2022.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3