Mass Balance Reconstruction for Laohugou Glacier No. 12 from 1980 to 2020, Western Qilian Mountains, China

Author:

Wu JiakeORCID,Sun Weijun,Huai Baojuan,Ding MinghuORCID,Wang LeiORCID,Wang Yuzhe,Zhang Junlong,Du Wentao,Chen Jizu,Qin Xiang

Abstract

A long-series mass balance (MB) of glaciers can be used to study glacier–climate relationships. Using a distributed simplified energy balance model (SEBM) and an enhanced temperature-index model (ETIM), the MB of Laohugou Glacier No. 12 (LHG12) was reconstructed from 1980 to 2020, driven by a calibrated ERA5 reanalysis dataset. The simulation of SEBM performs better than that of ETIM. The results showed that the annual MB of LGH12 is a fluctuating trend of declining from 1980 to 2020, with annual means of −0.39 ± 0.28 m w.e. a−1 and cumulative value of −16 ± 4 m w.e. During 1980–1990, the annual MB fluctuated in a small range, while after 1990, LHG12 accelerated melting owing to rising air temperature, with annual means of −0.48 m w.e. a−1, three times as large as that of 1980–1990. The largest mass loss occurred during 2001–2010 at an average rate of −0.57 m w.e. a−1. The average equilibrium line altitude (ELA) was 4976 m a.s.l., and since 1980, the ELA has been increasing at a rate of 37.5 m/10 a. LHG12 is most sensitive to air temperature, and the MB sensitivity reaches −0.51 m w.e. a−1 with air temperature increase of 1 °C. The sensitivity of MB to incoming shortwave radiation (+10%) simulated by SEBM is −0.30 m w.e. a−1, three times larger than that simulated by ETIM. This is mainly because the two models have different conditions for controlling melting. Melting is controlled only by air temperature for ETIM, while for SEBM, it is controlled by air temperature and incoming shortwave radiation.

Funder

Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3