Urban Traffic Imaging Using Millimeter-Wave Radar

Author:

Yang BoORCID,Zhang Hua,Chen YurongORCID,Zhou YongjunORCID,Peng YuORCID

Abstract

Imaging technology enhances radar environment awareness. Imaging radar can provide richer target information for traffic management systems than conventional traffic detection radar. However, there is still a lack of research on millimeter-wave radar imaging technology for urban traffic surveillance. To solve the above problem, we propose an improved three-dimensional FFT imaging algorithm architecture for radar roadside imaging in urban traffic scenarios, enabling the concurrence of dynamic and static targets imaging. Firstly, by analyzing the target characteristics and background noise in urban traffic scenes, the Monte-Carlo-based constant false alarm detection algorithm (MC-CFAR) and the improved MC-CFAR algorithm are proposed, respectively, for moving vehicles and static environmental targets detection. Then, for the velocity ambiguity solution problem with multiple targets and large velocity ambiguity cycles, an improved Hypothetical Phase Compensation algorithm (HPC-SNR) is proposed and complimented. Further, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used to remove outliers to obtain a clean radar point cloud image. Finally, traffic targets within the 50 m range are presented as two-dimensional (2D) point cloud imaging. In addition, we also try to estimate the vehicle type by target point cloud size, and its accuracy reaches more than 80% in the vehicle sparse condition. The proposed method is verified by actual traffic scenario data collected by a millimeter-wave radar system installed on the roadside. The work can support further intelligent transportation management and extend radar imaging applications.

Funder

Civil Aerospace Technology Advanced Research project

Science and Technology on Near-Surface Detection Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3