High-Resolution Drone Images Show That the Distribution of Mussels Depends on Microhabitat Features of Intertidal Rocky Shores

Author:

Barbosa Romina VanessaORCID,Jaud MarionORCID,Bacher CédricORCID,Kerjean Yann,Jean FredORCID,Ammann Jérôme,Thomas Yoann

Abstract

In this study, we used orthomosaics and a digital surface model (DSM) generated from drone surveys to (1) characterize the distribution of mussel (Mytilus galloprovincialis) aggregations at high resolution (centimeters), and (2) evaluate the role of topographic features, intertidal height, slope, and orientation angle in determining mussel distribution on two rocky shores oriented differently on both sides of a beach on the French Brittany coast. We first developed and tested a mussel visualization index (MVI) for mapping mussel aggregations from drone images. Then, we analyzed mussel distribution on the two shores. The results showed a contrasted total mussel-occupied area between the two rocky shores, with a higher occupation rate and a clear pattern of distribution depending on topographic features on the rocky shore oriented to the west. Intertidal height, and its associated immersion time, was the main factor determining mussel distribution. An optimum intertidal height was found in the center of the distribution height range, at c.a. 4.5 m above the lowest astronomical tide (LAT), where individuals are under immersion phase on average 43% of the time. Within this optimum, the occupation rate of the mussels was significantly higher in microhabitats facing south and west, particularly at intermediate slope angles. These results demonstrate the role of microhabitat topographic features on the development of intertidal mussels and their final distribution. Furthermore, the results highlight the importance of mesoscale structures of habitats (e.g., 100 m), which seem to be responsible for the differences we observed between the two shores. Our methodological approach highlights the main advantage of using high-resolution drone images to address ecological processes in intertidal ecosystems. Indeed, drone imagery offers the possibility to assess small-scale interactions between individuals and habitat conditions over a wide area, which is technically infeasible from fieldwork approaches or by using satellite remote sensing due to their lower resolution. Scale integration and methodological complementarity are powerful approaches to correctly represent the processes governing the ecology of intertidal ecosystems. We suggest using this methodology to monitor long-term changes of sentinel sessile species.

Funder

Region Bretagne, Université de Bretagne Occidentale (UBO), Brest, France

European Institute for Marine Studies (IUEM), Plouzane, France

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3