Abstract
Glacier mass balance can be regarded as a major direct index of climate variations. In this paper, a geodetic method was used to evaluate the mass balance of Sawir glaciers based on topographic map DEM (Digital Elevation Model), SRTM 30 m DEM, ASTER 30 m DEM, and Sentinel-1 Synthetic Aperture Radar 10 m DEM between 1959–2021, in order to explore the response to climatic alterations. In the case of Muz Taw glacier, the first comprehensive dataset concerning mass-balance readings for the 2014–2021 period was provided based on the eight-year consecutive field measurements. The glaciological average mass balance reached –883.4 ± 130 mm a–1 during this period. The geodetic mass balance for all glaciers of the Sawir Mountain range was −0.43 ± 0.12 m w. e. a−1 between 1959 and 2000, and accelerated to −0.56 ± 0.13 m w. e. a−1 between 2000 and 2021. A comparison of field measurements and remote-sensing approaches for determining the Muz Taw glacier’s mass balance between 2014–2021 proves the feasibility of the remote-sensing approach, which involves mass-balance monitoring based on DEMdata. In addition, our findings support the contention that air temperature is the dominant factor for accelerated glacier mass loss and surface elevation change.
Funder
Third Comprehensive Scientific Expedition of Xinjiang Uyghur Autonmous Region
National Natural Science Foundation of China
State Key Laboratory of Cryospheric Science
Open-end Foundation for National Cryosphere Desert Data Center
Youth Innovation Promotion Association of Chinese Academy of Sciences
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献