A Multi-Dimensional Deep-Learning-Based Evaporation Duct Height Prediction Model Derived from MAGIC Data

Author:

Yang ChengORCID,Wang JianORCID,Shi YafeiORCID

Abstract

The evaporation duct height (EDH) can reflect the main characteristics of the near-surface meteorological environment, which is essential for designing a communication system under this propagation mechanism. This study proposes an EDH prediction network with multi-layer perception (MLP). Further, we construct a multi-dimensional EDH prediction model (multilayer-MLP-EDH) for the first time by adding spatial and temporal “extra data” derived from the meteorological measurements. The experimental results show that: (1) compared with the naval-postgraduate-school (NPS) model, the root-mean-square error (RMSE) of the meteorological-MLP-EDH model is reduced to 2.15 m, and the percentage improvement reached 54.00%; (2) spatial and temporal parameters can reduce the RMSE to 1.54 m with an improvement of 66.96%; (3) the multilayer-MLP- EDH model can match measurements well at both large and small scales by attaching meteorological parameters at extra height, the error is further reduced to 1.05 m, with 77.51% improvement compared with the NPS model. The proposed model can significantly improve the prediction accuracy of the EDH and has great potential to improve the communication quality, reliability, and efficiency of ducting in evaporation ducts.

Funder

National Natural Science Foundation of China

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information Systems

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3