Applying Deep Learning in the Prediction of Chlorophyll-a in the East China Sea

Author:

Cen Haobin,Jiang Jiahan,Han Guoqing,Lin Xiayan,Liu Yu,Jia Xiaoyan,Ji Qiyan,Li BoORCID

Abstract

The ocean chlorophyll-a (Chl-a) concentration is an important variable in the marine environment, the abnormal distribution of which is closely related to the hazards of red tides. Thus, the accurate prediction of its concentration in the East China Sea (ECS) is greatly important for preventing water eutrophication and protecting the coastal ecological environment. Processed by two different pre-processing methods, 10-year (2011–2020) satellite-observed chlorophyll-a data and logarithmic data were used as the long short-term memory (LSTM) neural network training datasets in this study. The 2021 data were used for comparison to prediction results. The past 15 days’ data were used to predict the concentration of chlorophyll-a for the five following days. Results showed that the predictions obtained by both pre-processing methods could simulate the seasonal distribution of the Chl-a concentration in the ECS effectively. Moreover, the prediction performance of the model driven by the original values was better in the medium- and low-concentration regions. However, in the high-concentration region, the prediction of extreme concentrations by the two data-driven LSTM models showed underestimation, considering that the prediction performance of the model driven by the original values was better. Results of sensitivity experiments showed that the prediction accuracy of the model decreased considerably when the backward prediction time step increased. In this study, the neural network was driven only by chlorophyll-a, whose concentration in the ECS was forecasted, and the effect of other relevant marine elements on Chl-a was not considered, which is the current weakness of this study.

Funder

Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation of China

Basic Scientific Research Business Expenses of Zhejiang Provincial Universities

Science Foundation of Donghai Laboratory

Marine Sciences in the First-Class Subjects of Zhejiang

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3