Abstract
A series of novel lightweight TaNbVTi-based refractory high entropy alloys (RHEA) were fabricated through ball-milling and spark plasma sintering (SPS). The reinforced phase of TiO precipitates were in-situ formed due to the introduction of Al2O3 ceramic particles. The RHEA with 15% Al2O3 exhibits a high compressive yield strength (1837 MPa) and a low density (7.75 g/cm3) with an adequate ductility retention. The yield strength and density are 32% higher and 15% lower, respectively, compared to the RHEA without Al2O3 addition. The specific yield strength (237 MPa cm3/g) of the RHEAs is much higher than that of other reported RHEAs, and is mainly ascribed to the introduction of high volume fraction of Al2O3 additives, resulting in solid solution strengthening and precipitation strengthening. Meanwhile, the ductile matrix is responsible for the good compressive plasticity.
Funder
the Science and Technology Innovation Program of Hunan Province
the National Natural Science Foundation of China
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献