Synergistic Strengthening of Mechanical Properties and Electromagnetic Interference Shielding Performance of Carbon Nanotubes (CNTs) Reinforced Magnesium Matrix Composites by CNTs Induced Laminated Structure

Author:

Sun Zhenming,Shi Hailong,Hu Xiaoshi,Yan Mufu,Wang Xiaojun

Abstract

In this study, we reported a laminated CNTs/Mg composite fabricated by spray-deposition and subsequent hot-press sintering, which realized simultaneous enhancement effects on strength and electromagnetic interference (EMI) shielding effectiveness (SE) by the introduced CNTs and CNT induced laminated ‘Mg-CNT-Mg’ structure. It was found that the CNTs/Mg composite with 0.5 wt.% CNTs not only exhibited excellent strength-toughness combination but also achieved a high EMI SE of 58 dB. The CNTs increased the strength of the composites mainly by the thermal expansion mismatch strengthening and blocking dislocation movements. As for toughness enhancement, CNTs induced laminated structure redistributes the local strain effectively and alleviates the strain localization during the deformation process. Moreover, it could also hinder the crack propagation and cause crack deflection, which resulted in an increment of the required energy for the failure of CNTs/Mg composites. Surprisingly, because of the laminated structure induced by introducing CNTs, the composite also exhibited an outperforming EMI SE in the X band (8.2–12.4 GHz). The strong interactions between the laminated ‘Mg-CNT-Mg’ structure and the incident electromagnetic waves are responsible for the increased absorption of the electromagnetic radiation. The lightweight CNTs/Mg composite with outstanding mechanical properties and simultaneously increased EMI performance could be employed as shell materials for electronic packaging components or electromagnetic absorbers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3