Author:
Kim Jin Sung,Kim Seong Jong,Min Kyoung Jae,Choi Jung Chul,Eun Hwa Seong,Song Bhum Keun
Abstract
In the present study, fiber-reinforced plastics (FRP) grid-reinforced concrete with very rapid hardening polymer (VRHP) mortar composites were fabricated using three types of design methods for the FRP grid (hand lay-up method, resin infusion method, and prepreg oven vacuum bagging method), along with two types of fibers (carbon fiber and glass fiber) and two types of sheets (fabric and prepreg). The FRP grid was prepared by cutting the FRP laminates into a 10 mm thick, 50 mm × 50 mm grid. The tensile behavior of the FRP grid embedded in composites was systematically analyzed in terms of the load extension, fracture mode, partial tensile strain, and load-bearing rate. The CFRP grid manufactured by the prepreg OVB method showed the best tensile behavior compared to the CFRP grid manufactured by the hand lay-up and resin infusion methods. The load-bearing of each grid point was proportional to the height from the load-bearing part when reaching the maximum tensile load. In addition, finite element analysis was conducted to compare the experimental and analysis results.
Funder
Korea Agency for Infrastructure Technology Advancement
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献