Abstract
Fast charging-discharging is one of the important requirements for next-generation high-energy Li-ion batteries, nevertheless, electrons transport in the active oxide materials is limited. Thus, carbon coating of active materials is a common method to supply the routes for electron transport, but it is difficult to synthesize the oxide-carbon composite for LiNiO2-based materials which need to be calcined in an oxygen-rich atmosphere. In this work, LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with electronic conductor LaNiO3 (LNO) crystallites is demonstrated for the first time as fast charging-discharging and high energy cathodes for Li-ion batteries. The LaNiO3 succeeds in providing an exceptional fast charging-discharging behavior and initial coulombic efficiency in comparison with pristine NCM811. Consequently, the NCM811@3LNO electrode presents a higher capacity at 0.1 C (approximately 246 mAh g−1) and a significantly improved high rate performance (a discharge specific capacity of 130.62 mAh g−1 at 10 C), twice that of pristine NCM811. Additionally, cycling stability is also improved for the composite material. This work provides a new possibility of active oxide cathodes for high energy/power Li-ion batteries by electronic conductor LaNiO3 coating.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献