Phase-Change Materials in Concrete: Opportunities and Challenges for Sustainable Construction and Building Materials

Author:

Sharma Raju,Jang Jeong-GookORCID,Hu Jong-WanORCID

Abstract

The use of phase-change materials (PCM) in concrete has revealed promising results in terms of clean energy storage. However, the negative impact of the interaction between PCM and concrete on the mechanical and durability properties limits field applications, leading to a shift of the research to incorporate PCM into concrete using different techniques to overcome these issues. The storage of clean energy via PCM significantly supports the UN SDG 7 target of affordable and clean energy. Therefore, the present study focuses on three aspects: PCM type, the effect of PCM on concrete properties, and connecting the outcome of PCM concrete composite to the United Nations sustainable development goals (UN SDGs). The compensation of reduction in strength of PCM-contained concrete is possible up to some extent with the use of nanomaterials and supplementary cementitious materials. As PCM-incorporated concrete is categorized a type of building material, the large-scale use of this material will affect the different stages associated with building lifetimes. Therefore, in the present study, the possible amendments of the different associated stages of building lifetimes after the use of PCM-incorporated concrete are discussed and mapped in consideration of the UN SDGs 7, 11, and 12. The current challenges in the widespread use of PCM are lower thermal conductivity, the trade-off between concrete strength and PCM, and absence of the link between the outcome of PCM-concrete composite and UN SDGs. The global prospects of PCM-incorporated concrete as part of the effort to attain the UN SDGs as studied here will motivate architects, designers, practicing engineers, and researchers to accelerate their efforts to promote the consideration of PCM-containing concrete ultimately to attain net zero carbon emissions from building infrastructure for a sustainable future.

Funder

Ministry of Trade, Industry and Energy

Research Assistance Program Incheon National University

Publisher

MDPI AG

Subject

General Materials Science

Reference165 articles.

1. Behavior of RC exterior beam column joint retrofitted using UHP-HFRC

2. China Energy Outlook

3. Building Innovation: A Guide for High-Performance Energy Efficient Buildings in India;Singh,2018

4. IEA (2012), World Energy Outlook 2012, IEA, Parishttps://www.iea.org/reports/world-energy-outlook-2012

5. Energy Technology Perspectives 2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3