Optical Simulation and Experimental Assessment with Time–Walk Correction of TOF–PET Detectors with Multi-Ended Readouts

Author:

Xie SiweiORCID,Zhu Zhiliang,Zhang XiORCID,Xie QiangqiangORCID,Yu Hongsen,Zhang Yibin,Xu Jianfeng,Peng Qiyu

Abstract

As a commonly used solution, the multi-ended readout can measure the depth-of-interaction (DOI) for positron emission tomography (PET) detectors. In the present study, the effects of the multi-ended readout design were investigated using the leading-edge discriminator (LED) triggers on the timing performance of time-of-flight (TOF) PET detectors. At the very first, the photon transmission model of the four detectors, namely, single-ended readout, dual-ended readout, side dual-ended readout, and triple-ended readout, was established in Tracepro. The optical simulation revealed that the light output of the multi-ended readout was higher. Meanwhile, the readout circuit could be triggered earlier. Especially, in the triple-ended readout, the light output at 0.5 ns was observed to be nearly twice that of the single-ended readout after the first scintillating photon was generated. Subsequently, a reference detector was applied to test the multi-ended readout detectors that were constructed from a 6 × 6 × 25 mm3 LYSO crystal. Each module is composed of a crystal coupled with multiple SiPMs. Accordingly, its timing performance was improved by approximately 10% after the compensation of fourth-order polynomial fitting. Finally, the compensated full-width-at-half-maximum (FWHM) coincidence timing resolutions (CTR) of the dual-ended readout, side dual-ended readout, and triple-ended readout were 216.9 ps, 231.0 ps, and 203.6 ps, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3