Wireless, Material-Integrated Sensors for Strain and Temperature Measurement in Glass Fibre Reinforced Composites

Author:

Bertram Lukas1,Brink Michael2,Lang Walter1

Affiliation:

1. Institute for Microsensors, Actuators and Systems (IMSAS), University of Bremen, 28359 Bremen, Germany

2. BIBA—Bremer Institut für Produktion und Logistik GmbH, 28359 Bremen, Germany

Abstract

Fiber reinforced plastics (FRP) offer huge potentials for energy efficient applications. Special care must be taken during both FRP fabrication and usage to ensure intended material properties and behavior. This paper presents a novel approach for the monitoring of the strain and temperature of glass fibre reinforced polymer (GFRP) materials in the context of both production process monitoring and structural health monitoring (SHM) applications. The sensor is designed to be integrated into GFRPs during the production process, and the sensor concept includes possibilities of automated placement during textile layup. To minimize sensor impact on GFRP integrity and to simplify vacuum setup and part handling, the sensor operates without the need for either wires or a battery. In the first sections of this work, sensor concept, design and prototype fabrication are presented. Subsequently, it is shown how the sensors can be used for flow front monitoring and cure estimation during GFRP production by measuring local resin temperature. The resulting specimens are then characterized regarding strain measurement capabilities, mechanical influence on the host component and overall system limitations. Average strain sensor accuracy is found to be ≤0.06 mm/m, while a maximum operation temperature of 126.9 °C and a maximum reading distance of 38 mm are measured. Based on a limited number of bending tests, no negative influence of sensor presence on breaking strength could be found. Possible applications include structural components, e.g., wind turbine blades or boat hulls.

Funder

the German Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3