IoTTPS: Ensemble RKSVM Model-Based Internet of Things Threat Protection System

Author:

Akram Urooj1,Sharif Wareesa1,Shahroz Mobeen1ORCID,Mushtaq Muhammad Faheem1,Aray Daniel Gavilanes234,Thompson Ernesto Bautista256,Diez Isabel de la Torre7ORCID,Djuraev Sirojiddin8,Ashraf Imran9ORCID

Affiliation:

1. Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan

2. Higher Polytechnic School, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain

3. Department of Projects, Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola

4. Research Group on Foods, Nutritional Biochemistry and Health, Fundación Universitaria Internacional de Colombia, Bogotá 11131, Colombia

5. Universidad Internacional Iberoamericana, Campeche 24560, Mexico

6. Universidad Internacional Iberoamericana Arecibo, Puerto Rico, PR 00613, USA

7. Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain

8. Department of Software Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan

9. Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM, comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM) model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99, NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM, gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore, performance is optimized by adding a grid search hyperparameter optimization technique with K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017, are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using grid search and cross-fold validation. Experimental results demonstrate the superior performance of the proposed model for IoT threat detection.

Funder

European University of Atlantic

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3