Abstract
This paper describes the characterization of inkjet-printed resistive temperature sensors according to the international standard IEC 61928-2. The goal is to evaluate such sensors comprehensively, to identify important manufacturing processes, and to generate data for inkjet-printed temperature sensors according to the mentioned standard for the first time, which will enable future comparisons across different publications. Temperature sensors were printed with a silver nanoparticle ink on injection-molded parts. After printing, the sensors were sintered with different parameters to investigate their influences on the performance. Temperature sensors were characterized in a temperature range from 10 °C to 85 °C at 60% RH. It turned out that the highest tested sintering temperature of 200 °C, the longest dwell time of 24 h, and a coating with fluoropolymer resulted in the best sensor properties, which are a high temperature coefficient of resistance, low hysteresis, low non-repeatability, and low maximum error. The determined hysteresis, non-repeatability, and maximum error are below 1.4% of the full-scale output (FSO), and the temperature coefficient of resistance is 1.23–1.31 × 10−3 K−1. These results show that inkjet printing is a capable technology for the manufacturing of temperature sensors for applications up to 85 °C, such as lab-on-a-chip devices.
Funder
the Ministry of Economic Affairs, Labour and Tourism of Baden-Württemberg, Germany
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference30 articles.
1. Brief Review of Nanosilver Sintering: Manufacturing and Reliability;Wang;J. Electron. Mater.,2021
2. Polzinger, B. Inkjetdruck von Silberleiterbahnen zur Anwendung als Temperatursensor. Ph.D. Thesis, 2017.
3. Lupo, D., Kirchmeyer, S., Hecker, K., and Krausmann, J. OE-A Roadmap for Organic and Printed Electronics, 2020.
4. Layered 3D Printing by Tethered Pyro-Electrospinning;Coppola;Adv. Polym. Technol.,2020
5. Investigation on cone jetting regimes of liquid droplets subjected to pyroelectric fields induced by laser blasts;Gennari;Appl. Phys. Lett.,2015
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献