Affiliation:
1. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. Beijing Electronic Science and Technology Institute, Beijing 100070, China
3. School of Cyber Engineering, Xidian University, Xi’an 710071, China
Abstract
Reversible data hiding in encrypted images (RDH-EI) is instrumental in image privacy protection and data embedding. However, conventional RDH-EI models, involving image providers, data hiders, and receivers, limit the number of data hiders to one, which restricts its applicability in scenarios requiring multiple data embedders. Therefore, the need for an RDH-EI accommodating multiple data hiders, especially for copyright protection, has become crucial. Addressing this, we introduce the application of Pixel Value Order (PVO) technology to encrypted reversible data hiding, combined with the secret image sharing (SIS) scheme. This creates a novel scheme, PVO, Chaotic System, Secret Sharing-based Reversible Data Hiding in Encrypted Image (PCSRDH-EI), which satisfies the (k,n) threshold property. An image is partitioned into N shadow images, and reconstruction is feasible when at least k shadow images are available. This method enables separate data extraction and image decryption. Our scheme combines stream encryption, based on chaotic systems, with secret sharing, underpinned by the Chinese remainder theorem (CRT), ensuring secure secret sharing. Empirical tests show that PCSRDH-EI can reach a maximum embedding rate of 5.706 bpp, outperforming the state-of-the-art and demonstrating superior encryption effects.
Funder
NSFC-General Technology Fundamental Research Joint Fund
National Nature Science Foundation of China
BUPT Excellent Ph.D. Students Foundation
Beijing Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献