Hydriding, Oxidation, and Ductility Evaluation of Cr-Coated Zircaloy-4 Tubing

Author:

Yan Yong,Graening Tim,Nelson Andrew T.

Abstract

Accident-tolerant fuel concepts have been developed recently in diverse research programs. Recent research has shown clear advantages of Cr-coated Zr cladding over bare cladding tubes regarding oxidation behavior under the design basis loss-of-coolant accident condition. However, limited data are available about the hydriding behavior of the Cr coating. For that purpose, Cr-coated Zricaloy-4 tubes were tested to investigate the effects of hydriding, oxidation, and postquench ductility behavior on coated Zr cladding. A high-power impulse magnetron sputtering (HiPIMS) process was used to produce a high-density coating on the Zircaloy-4 tube surface. Coated and uncoated Zircaloy-4 tube specimens underwent one-sided hydriding in a tube furnace filled with pure hydrogen gas at 425 °C. The tubing specimen ends were sealed with Swagelok plugs before the hydriding runs. For uncoated specimens, H analysis of the hydrided specimens indicated that the H content increased as the test time and initial pressure increased. However, almost no change was observed for the coated specimens that were hydrided under the same test conditions. After one-sided hydriding, the hydrided coated and uncoated specimens were exposed to steam at high temperatures for two-sided oxidation studies to simulate accident conditions. The coated specimens showed a slower oxidation: oxygen pickup was 50% lower than the uncoated specimens tested under the same conditions. Ring compression testing was performed to evaluate the embrittlement behavior of the Cr-coated specimens after hydriding and oxidation. The results indicated that the HiPIMS coating provides excellent protection from hydriding and oxidation at high temperatures.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference23 articles.

1. Accident tolerant fuels for LWRs: A perspective;J. Nucl. Mater.,2014

2. Research and Development Methodology for Practical Use of Accident Tolerant Fuel in Light Water Reactors;Nucl. Eng. Technol.,2016

3. Protective coatings on zirconium-based alloys as accident-Tolerant fuel (ATF) claddings;Corros. Rev.,2017

4. Accident tolerant fuel cladding development: Promise, status, and challenges;J. Nucl. Mater.,2018

5. Geelhood, K.G., and Luscher, W.G. (2019). Degradation and Failure Phenomena of Accident Tolerant Fuel Concepts, Pacific Northwest National Laboratory. PNNL-28437.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3