The EEG-Based Fusion Entropy-Featured Identification of Isometric Contraction Forces under the Same Action

Author:

Yao Bo1ORCID,Wu Chengzhen12,Zhang Xing1,Yao Junjie1,Xue Jianchao3,Zhao Yu3ORCID,Li Ting1,Pu Jiangbo1ORCID

Affiliation:

1. Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China

2. School of Life Sciences, Tiangong University, Tianjin 300387, China

3. Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China

Abstract

This study explores the important role of assessing force levels in accurately controlling upper limb movements in human–computer interfaces. It uses a new method that combines entropy to improve the recognition of force levels. This research aims to differentiate between different levels of isometric contraction forces using electroencephalogram (EEG) signal analysis. It integrates eight different entropy measures: power spectrum entropy (PSE), singular spectrum entropy (SSE), logarithmic energy entropy (LEE), approximation entropy (AE), sample entropy (SE), fuzzy entropy (FE), alignment entropy (PE), and envelope entropy (EE). The findings emphasize two important advances: first, including a wide range of entropy features significantly improves classification efficiency; second, the fusion entropy method shows exceptional accuracy in classifying isometric contraction forces. It achieves an accuracy rate of 91.73% in distinguishing between 15% and 60% maximum voluntary contraction (MVC) forces, along with 69.59% accuracy in identifying variations across 15%, 30%, 45%, and 60% MVC. These results illuminate the efficacy of employing fusion entropy in EEG signal analysis for isometric contraction detection, heralding new opportunities for advancing motor control and facilitating fine motor movements through sophisticated human–computer interface technologies.

Publisher

MDPI AG

Reference41 articles.

1. A Boosting-Based Spatial-Spectral Model for Stroke Patients’ EEG Analysis in Rehabilitation Training;Liu;IEEE Trans. Neural Syst. Rehabil. Eng.,2016

2. Al-Qazzaz, N.K., Alyasseri, Z.A.A., Abdulkareem, K.H., Ali, N.S., Al-Mhiqani, M.N., and Guger, C. (2021). EEG Feature Fusion for Motor Imagery: A New Robust Framework towards Stroke Patients Rehabilitation. Comput. Biol. Med., 137.

3. Saibene, A., Gasparini, F., and Solé-Casals, J. (2021). Novel EEG-Based BCIs for Elderly Rehabilitation Enhancement. arXiv.

4. Zhang, H., and Zhang, L. (2013). Spatial-Spectral Boosting Analysis for Stroke Patients’ Motor Imagery EEG in Rehabilitation Training. arXiv.

5. Motor Imagery in Physical Therapist Practice;Dickstein;Phys. Ther.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3