The Use of Multicriteria Inference Method to Identify and Classify Selected Combustion Engine Malfunctions Based on Vehicle Structure Vibrations

Author:

Prażnowski Krzysztof,Bieniek AndrzejORCID,Mamala JarosławORCID,Deptuła AdamORCID

Abstract

Internal combustion engines are among the most commonly used propulsion units for drive systems in various industries such as land transportation, maritime transportation, and power generation. Their operation involves a continuous change of technical condition as a result of not only the combustion process but also their operation under conditions of variable load or ambient impact. It is therefore important to monitor the technical condition of internal combustion engines to ensure high performance and reliability over their lifetime. The article presents the test results obtained from incorrect operation of an internal combustion engine as a result of forced failures of the ignition and injection system. On this basis, a multicriteria comparison of the signal analysis of engine block vibrations was made, after the transformation of the signal from the time domain to the frequency domain, by using the induction technique obtained from the operation of decision tree algorithms. For this purpose, the amplitude spectrum in the frequency domain, scaled to absolute values of discretization for which teaching and testing data tables were created for successive harmonics, was determined for the engine block vibration signal being tested. On the basis of the developed algorithm using decision trees, a multicriteria data table was analyzed for which a compatibility path for the analyzed engine block vibration signal is created. In this way, it is confirmed with a specified degree of effectiveness, depending on the point of operation of the engine resulting from its crankshaft speed, that there is a possibility of detecting a preset ignition or injection system malfunction in the technical condition of the internal combustion engine with a probability up to about 72%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Cylinders diagnosis system of a 1MW internal combustion engine through vibrational signal processing using DWT technique

2. Advances in Condition Monitoring of Machinery in Non-Stationary Operations, Engine Diagnosis Based on Vibration Analysis Using Diffrent Fuel Blends;Grajales,2014

3. Intelligent Fault Diagnosis of Diesel Engines via Extreme Gradient Boosting and High-Accuracy Time–Frequency Information of Vibration Signals

4. Fault detection of injectors in diesel engines using vibration time-frequency analysis

5. The diagnostic model proposition of the engine vibration signal;Komorska;J. KONES,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3