Abstract
In this study, ballistic experiments were performed to determine the critical velocity of a Twaron® 2040 high-performance yarn transversely impacted by round projectiles. Four different round projectiles possessing a radius of curvature of 2 µm, 20 µm, 200 µm and 2 mm were used in this study. Load cells were mounted to the grips to measure the load history of the yarn upon impact. A high-speed camera was incorporated into the ballistic experimental setup to capture the failure process of the yarn upon impact. A scanning electron microscope was utilized to perform post-mortem failure analysis on the recovered specimens. The results showed that as the radius of curvature of the projectile increased, the critical velocity also increased. The critical velocities for all cases were bounded between those predicted from the Euler–Bernoulli beam and Smith models. Upon impact above the upper limit of the critical velocity, the axial loads revealed a demonstrative reduction. The failure surfaces changed from shear to fibrillation as the radius of curvature increased. For those specimens that failed in shear, Hertzian contact model was used to predict the critical velocity.
Subject
Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献