Analysis of SINE Families B2, Dip, and Ves with Special Reference to Polyadenylation Signals and Transcription Terminators

Author:

Vassetzky Nikita S.,Borodulina Olga R.,Ustyantsev Ilia G.,Kosushkin Sergei A.,Kramerov Dmitri A.ORCID

Abstract

Short Interspersed Elements (SINEs) are eukaryotic non-autonomous retrotransposons transcribed by RNA polymerase III (pol III). The 3′-terminus of many mammalian SINEs has a polyadenylation signal (AATAAA), pol III transcription terminator, and A-rich tail. The RNAs of such SINEs can be polyadenylated, which is unique for pol III transcripts. Here, B2 (mice and related rodents), Dip (jerboas), and Ves (vespertilionid bats) SINE families were thoroughly studied. They were divided into subfamilies reliably distinguished by relatively long indels. The age of SINE subfamilies can be estimated, which allows us to reconstruct their evolution. The youngest and most active variants of SINE subfamilies were given special attention. The shortest pol III transcription terminators are TCTTT (B2), TATTT (Ves and Dip), and the rarer TTTT. The last nucleotide of the terminator is often not transcribed; accordingly, the truncated terminator of its descendant becomes nonfunctional. The incidence of complete transcription of the TCTTT terminator is twice higher compared to TTTT and thus functional terminators are more likely preserved in daughter SINE copies. Young copies have long poly(A) tails; however, they gradually shorten in host generations. Unexpectedly, the tail shortening below A10 increases the incidence of terminator elongation by Ts thus restoring its efficiency. This process can be critical for the maintenance of SINE activity in the genome.

Funder

Russian Scientific Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3