Identification and Characterization of Novel circRNAs Involved in Muscle Growth of Blunt Snout Bream (Megalobrama amblycephala)

Author:

Liu Lifang,Chen Yulong,Diao Jinghan,Luo LifeiORCID,Gao Zexia

Abstract

Circular RNAs (circRNAs), a novel class of endogenous RNAs, have been recognized to play important roles in the growth of animals. However, the regulatory mechanism of circRNAs on fish muscle growth is still unclear. In this study, we performed whole transcriptome analysis of skeletal muscles from two populations with different growth rates (fast-growing and slow-growing) of blunt snout bream (Megalobrama amblycephala), an important fish species for aquaculture. The selected circRNAs were validated by qPCR and Sanger sequencing. Pairs of circRNA–miRNA–mRNA networks were constructed with the predicted differentially expressed (DE) pairs, which revealed regulatory roles in muscle myogenesis and hypertrophy. As a result, a total of 445 circRNAs were identified, including 42 DE circRNAs between fast-growing (FG) and slow-growing (SG) groups. Many of these DE circRNAs were related with aminoglycan biosynthetic and metabolic processes, cytokinetic processes, and the adherens junction pathway. The functional prediction results showed that novel_circ_0001608 and novel_circ_0002886, competing to bind with dre-miR-153b-5p and dre-miR-124-6-5p, might act as competing endogenous RNAs (ceRNAs) to control MamblycephalaGene14755 (pik3r1) and MamblycephalaGene10444 (apip) level, respectively, thus playing an important regulatory role in muscle growth. Overall, these results will not only help us to further understand the novel RNA transcripts in M. amblycephala, but also provide new clues to investigate the potential mechanism of circRNAs regulating fish growth and muscle development.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Agriculture Research System of China

Wuhan Applied Foundational Frontier Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3