Dark Side of Cancer Therapy: Cancer Treatment-Induced Cardiopulmonary Inflammation, Fibrosis, and Immune Modulation

Author:

Boopathi Ettickan,Thangavel Chellappagounder

Abstract

Advancements in cancer therapy increased the cancer free survival rates and reduced the malignant related deaths. Therapeutic options for patients with thoracic cancers include surgical intervention and the application of chemotherapy with ionizing radiation. Despite these advances, cancer therapy-related cardiopulmonary dysfunction (CTRCPD) is one of the most undesirable side effects of cancer therapy and leads to limitations to cancer treatment. Chemoradiation therapy or immunotherapy promote acute and chronic cardiopulmonary damage by inducing reactive oxygen species, DNA damage, inflammation, fibrosis, deregulation of cellular immunity, cardiopulmonary failure, and non-malignant related deaths among cancer-free patients who received cancer therapy. CTRCPD is a complex entity with multiple factors involved in this pathogenesis. Although the mechanisms of cancer therapy-induced toxicities are multifactorial, damage to the cardiac and pulmonary tissue as well as subsequent fibrosis and organ failure seem to be the underlying events. The available biomarkers and treatment options are not sufficient and efficient to detect cancer therapy-induced early asymptomatic cell fate cardiopulmonary toxicity. Therefore, application of cutting-edge multi-omics technology, such us whole-exome sequencing, DNA methylation, whole-genome sequencing, metabolomics, protein mass spectrometry and single cell transcriptomics, and 10 X spatial genomics, are warranted to identify early and late toxicity, inflammation-induced carcinogenesis response biomarkers, and cancer relapse response biomarkers. In this review, we summarize the current state of knowledge on cancer therapy-induced cardiopulmonary complications and our current understanding of the pathological and molecular consequences of cancer therapy-induced cardiopulmonary fibrosis, inflammation, immune suppression, and tumor recurrence, and possible treatment options for cancer therapy-induced cardiopulmonary toxicity.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3