Abstract
Because of their low cost and easy production, silica nanoparticles (SiNPs) are widely used in multiple manufacturing applications as anti-caking, densifying and hydrophobic agents. However, this has increased the exposure levels of the general population and has raised concerns about the toxicity of this nanomaterial. SiNPs affect the function of the airway epithelium, but the biochemical pathways targeted by these particles remain largely unknown. Here we investigated the effects of SiNPs on the responses of 16HBE14o- cultured human bronchial epithelial (16HBE) cells to the damage-associated molecular pattern ATP, using fluorometric measurements of intracellular Ca2+ concentration. Upon stimulation with extracellular ATP, these cells displayed a concentration-dependent increase in intracellular Ca2+, which was mediated by release from intracellular stores. SiNPs inhibited the Ca2+ responses to ATP within minutes of application and at low micromolar concentrations, which are significantly faster and more potent than those previously reported for the induction of cellular toxicity and pro-inflammatory responses. SiNPs-induced inhibition is independent from the increase in intracellular Ca2+ they produce, is largely irreversible and occurs via a non-competitive mechanism. These findings suggest that SiNPs reduce the ability of airway epithelial cells to mount ATP-dependent protective responses.
Funder
Fonds Wetenschappelijk Onderzoek
Onderzoeksraad, KU Leuven
European Commission
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献