Nitrogen-Doped Carbon Aerogels Derived from Starch Biomass with Improved Electrochemical Properties for Li-Ion Batteries

Author:

Kubicka Marcelina,Bakierska MonikaORCID,Chudzik Krystian,Świętosławski MichałORCID,Molenda Marcin

Abstract

Among all advanced anode materials, graphite is regarded as leading and still-unrivaled. However, in the modern world, graphite-based anodes cannot fully satisfy the customers because of its insufficient value of specific capacity. Other limitations are being nonrenewable, restricted natural graphite resources, or harsh conditions required for artificial graphite production. All things considered, many efforts have been made in the investigation of novel carbonaceous materials with desired properties produced from natural, renewable resources via facile, low-cost, and environmentally friendly methods. In this work, we obtained N-doped, starch-based carbon aerogels using melamine and N2 pyrolysis as the source of nitrogen. The materials were characterized by X-ray powder diffraction, elemental analysis, X-ray photoelectron spectroscopy, galvanostatic charge–discharge tests, cyclic voltammetry, and electrochemical impedance spectroscopy. Depending on the doping method and the nitrogen amount, synthesized samples achieved different electrochemical behavior. N-doped, bioderived carbons exhibit far better electrochemical properties in comparison with pristine ones. Materials with the optimal amount of nitrogen (such as MCAGPS-N8.0%—carbon aerogel made from potato starch modified with melamine and CAGPS-N1.2%—carbon aerogel made from potato starch modified by N2 pyrolysis) are also competitive to graphite, especially for high-performance battery applications. N-doping can enhance the efficiency of Li-ion cells mostly by inducing more defects in the carbon matrix, improving the binding ability of Li+ and charge-transfer process.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference54 articles.

1. Lithium ion Battery Value Chain and Related Opportunities for Europe;Lebedeva,2017

2. Graphite Market—Growth, Trends, and Forecast (2020–2025)https://www.reportlinker.com/p05826223/Graphite-Electrode-Market-Growth-Trends-and-Forecast.html?utm_source=GNW

3. Carbon Material from Natural Sources as an Anode in Lithium Secondary Battery

4. Biomass-derived renewable carbon materials for electrochemical energy storage

5. Porous Nitrogen-Doped Carbon Derived from Peanut Shell as Anode Material for Lithium Ion Battery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3