A Fuzzy Fusion Rotating Machinery Fault Diagnosis Framework Based on the Enhancement Deep Convolutional Neural Networks

Author:

Yang Daoguang,Karimi Hamid RezaORCID,Gelman Len

Abstract

Some artificial intelligence algorithms have gained much attention in the rotating machinery fault diagnosis due to their robust nonlinear regression properties. In addition, existing deep learning algorithms are usually dependent on single signal features, which would lead to the loss of some information or incomplete use of the information in the signal. To address this problem, three kinds of popular signal processing methods, including Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT) and directly slicing one-dimensional data into the two-dimensional matrix, are used to create four different datasets from raw vibration signal as the input data of four enhancement Convolutional Neural Networks (CNN) models. Then, a fuzzy fusion strategy is used to fuse the output of four CNN models that could analyze the importance of each classifier and explore the interaction index between each classifier, which is different from conventional fusion strategies. To show the performance of the proposed model, an artificial fault bearing dataset and a real-world bearing dataset are used to test the feature extraction capability of the model. The good anti-noise and interpretation characteristics of the proposed method are demonstrated as well.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3