Modal Frequencies Associations with Musculoskeletal Components of Human Legs for Extracorporeal Bone Healing Assessment Based on a Vibration Analysis Approach

Author:

Vien Benjamin StevenORCID,Chiu Wing KongORCID,Russ Matthias,Fitzgerald Mark

Abstract

Reliable and quantitative assessments of bone quality and fracture healing prompt well-optimised patient healthcare management and earlier surgical intervention prior to complications of nonunion and malunion. This study presents a clinical investigation on modal frequencies associations with musculoskeletal components of human legs by using a prototype device based on a vibration analysis method. The findings indicated that the first out-of-plane and coupled modes in the frequency range from 60 to 110 Hz are associated with the femur length, suggesting these modes are suitable quantitative measures for bone evaluation. Furthermore, higher-order modes are shown to be associated with the muscle and fat mass of the leg. In addition, mathematical models are formulated via a stepwise regression approach to determine the modal frequencies using the measured leg components as variables. The optimal models of the first modes consist of only femur length as the independent variable and explain approximately 43% of the variation of the modal frequencies. The subsequent findings provide insights for further development on utilising vibration-based methods for practical bone and fracture healing monitoring.

Funder

Office of Naval Research

Monash Institute of Medical Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Femoral Fracture Assessment Using Acceleration Signals Combined with Convolutional Neural Network;Journal of Vibration Engineering & Technologies;2023-10-29

2. Altering the course of fracture healing monitoring;Biomedical Engineering Advances;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3