Abstract
Fingerprint-based positioning techniques are a hot research topic because of their satisfactory accuracy in complex environments. In this study, we adopted the deep-learning-based long-time-evolution (LTE) signal fingerprint positioning method for outdoor environment positioning. Inspired by state-of-the-art image classification methods, a novel hybrid location gray-scale image utilizing LTE signal fingerprints is proposed in this paper. In order to deal with signal fluctuations, several data enhancement methods are adopted. A hierarchical architecture is put forward during the deep neural network (DNN) training. First, the proposed positioning technique is pre-trained by a modified Deep Residual Network (Resnet) coarse localizer which is capable of learning reliable features from a set of unstable LTE signals. Then, to alleviate the tremendous collection workload, as well as further improve the positioning accuracy, by using a multilayer perceptron (MLP), a transfer learning-based fine localizer is introduced for fine-tuning the coarse localizer. The experimental data was collected from realistic scenes to meet the requirement of actual environments. The experimental results show that the proposed system leads to a considerable positioning accuracy in a variety of outdoor environments.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献