Abundance and Diversity of Nitrifying Microorganisms in Marine Recirculating Aquaculture Systems

Author:

Li Qintong,Hasezawa Ryo,Saito Riho,Okano KunihiroORCID,Shimizu KazuyaORCID,Utsumi Motoo

Abstract

Recirculating aquaculture systems (RAS) are important for water quality management in aquaculture facilities, and can help resume water consumption. However, information about the community structure of the micro-ecosystem existing in biofilters, especially the participation of the known nitrifying groups (i.e., AOA, AOB, NOB, and comammox Nitrospira), remains to be fully clarified. In this research, we compared the community structures in three RAS systems operated at different temperatures in a marine aquarium, through both amoA-targeted qPCR assay and 16S rRNA-targeted next-generation sequencing. As result, AOA was the primary nitrifier in the biofilters and was typically abundant and diverse in high-temperature samples (ca. 25 °C). NOB’s relative abundance patterns were numerically similar to that of AOA, suggesting a cooperation relationship between AOA and NOB in the marine RAS system. AOB was at a comparable level with AOA in medium-temperature samples (ca. 19 °C), while their abundance sharply decreased in high-temperature samples. The number of observed OTUs of AOA in high-temperature samples was 1.9 and 1.5 times as much as that detected in low (ca. 10 °C) and medium temperature samples respectively, suggesting a much more diverse and predominant occurrence of AOA at high temperatures. Comammox Nitrospira was only detected at a low level in the biofilter samples, suggesting a negligible contribution to the nitrification process in such ammonia-limited, saline biofilms. Although comammox Nitrospira cannot be detected by 16S rRNA-based analysis, the high diversity and abundance of NOB that were detected in high-temperature samples indicated the prospective possibility of the occurrence of complete ammonia oxidation at high temperatures.

Funder

Toyo University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference66 articles.

1. Farming different species in RAS in Nordic countries: Current status and future perspectives

2. Emerging Trends in Salmonid RAS—Part II. System Enhancements;Summerfelt;Glob. Aquac. Advocate,2015

3. New Land-Based Salmon Producer Bares Plans to Build Global RAS Facilities;De Guzman,2018

4. Reducing Water Use for Animal Production through Aquaculture

5. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of archaea in aquaculture: prospects and challenges;Aquaculture International;2023-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3