Abstract
This paper studies the time-consistent optimal investment and reinsurance problem for mean-variance insurers when considering both stochastic interest rate and stochastic volatility in the financial market. The insurers are allowed to transfer insurance risk by proportional reinsurance or acquiring new business, and the jump-diffusion process models the surplus process. The financial market consists of a risk-free asset, a bond, and a stock modelled by Heston’s stochastic volatility model. Interest rate in the market is modelled by the Vasicek model. By using extended dynamic programming approach, we explicitly derive equilibrium reinsurance-investment strategies and value functions. In addition, we provide and prove a verification theorem and then prove the solution we get satisfies it. Moreover, sensitive analysis is given to show the impact of several model parameters on equilibrium strategy and the efficient frontier.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献