Abstract
This paper develops a mathematical model for intermodal freight transportation. It focuses on determining the flow of goods, the number of vehicles, and the transferred volume of goods transported from origin points to destination points. The model of this article is to minimize the total cost, which consists of fixed costs, transportation costs, intermodal transfer costs, and CO2 emission costs. It presents a mixed integer linear programming (MILP) model that minimizes total costs, and a fuzzy mixed integer linear programming (FMILP) model that minimizes imprecise total costs under conditions of uncertain data. In the models, node capacity, detour, and vehicle utilization are incorporated to estimate the performance impact. Additionally, a computational experiment is carried out to evaluate the impact of each constraint and to analyze the characteristics of the models under different scenarios. Developed models are tested using real data from a case study in Southern Vietnam in order to demonstrate their effectiveness. The results indicate that, although the objective function (total cost) increased by 20%, the problem became more realistic to address when the model was utilized to solve the constraints of node capacity, detour, and vehicle utilization. In addition, on the basis of the FMILP model, fuzziness is considered in order to investigate the impact of uncertainty in important model parameters. The optimal robust solution shows that the total cost of the FMILP model is enhanced by 4% compared with the total cost of the deterministic model. Another key measurement related to the achievement of global sustainable development goals is considered, reducing the additional intermodal transfer cost and the cost of CO2 emissions in the objective function.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献