Abstract
The Laplace operator on a Riemannian manifold plays an important role with eigenvalue problems and the spectral theory. Extending such an eigenvalue problem of smooth maps including the Gauss map, the notion of finite-type was introduced. The simplest finite-type is of 1-type. In particular, the spherical Gauss map is defined in a very natural way on spherical submanifolds. In this paper, we study ruled surfaces of the 3-dimensional sphere with generalized 1-type spherical Gauss map which generalizes the notion of 1-type. The classification theorem of ruled surfaces of the sphere with the spherical Gauss map of generalized 1-type is completed.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献