Dynamic Simulation of MFT and BT Processes on a 660 MW Ultra-Supercritical Circulating Fluidized Bed Boiler

Author:

Li Guo12,Tao Xiangyu3,Zhang Zonglong3,Yang Chen3,Deng Qigang12,Nie Li12,He Wei12,Li Weicheng12,Lu Jiayi12,Gong Liming12

Affiliation:

1. Clean Combustion and Flue Gas Purification Key Laboratory of Sichuan Province, Chengdu 611731, China

2. Dongfang Boiler Group Co., Ltd., Zigong 643001, China

3. School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China

Abstract

In order to study the dynamic characteristics of the 660 MW ultra-supercritical circulating fluidized bed (CFB) boiler when the main fuel trip (MFT) and boiler trip (BT) are triggered, a dynamic simulation model of the 660 MW ultra-supercritical circulating fluidized bed boiler was established on the Apros simulation platform. The model dynamically simulated the MFT and BT processes at 100% BMCR, 75% THA, and 50% THA conditions, respectively. The steady-state simulation results showed a high accuracy compared with the designed parameters. The dynamic simulation results showed that after triggering the MFT and BT, owing to the huge thermal inertia, the bed temperature and steam temperature decreased lowly. For 100% BMCR and 75% THA conditions, the moisture separator always worked in dry state during the MFT and BT processes. For the 50% THA condition, the moisture separator quickly switched from dry to wet operation after the boiler triggers MFT and BT and gradually switched from wet to dry operation after MFT and BT were reset.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3