Aerodynamic Drag Reduction by the Trapezoid Spanwise Groove Inspired by Pigeon Feathers

Author:

Wang Yanqing1,Wei Yuju1,Weng Ding1,Wang Jiadao1

Affiliation:

1. State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China

Abstract

Inspired by pigeon feathers, the drag-reducing contribution of spanwise grooves was studied. Surface topography of the wing feather was scanned by an instrument of white light interference. Three types of grooves of triangle, rectangle, and trapezoid were adopted based on the unsymmetric microstructures found on the feather surface. Numerical simulations were conducted to analyze drag-reducing mechanisms. According to the simulation results, the rectangular groove reduced the wall shear stress more efficiently but with greater additional pressure drag, while the triangular groove was the opposite. For the trapezoidal groove similar to the feather structure, drag reduction was the best out of the three. Wind tunnel experiments for the trapezoidal groove were performed by using a cylindrical model and large-area plate. Drag reduction was confirmed from the cylindrical model at a series of velocities from 15 m/s to 90 m/s (about 16% at velocity of 30 m/s and about 8.5% at velocity of 60 m/s). Drag reduction was also obtained from the plate model at a velocity range of 30 m/s to 75 m/s (about 19% at the velocity of 60 m/s), which worked for a wide range of velocity and was more meaningful for the application.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3