Optimization of CO2 Huff-n-Puff in Unconventional Reservoirs with a Focus on Pore Confinement Effects, Fluid Types, and Completion Parameters

Author:

Khanal Aaditya1,Shahriar Md Fahim1

Affiliation:

1. The Jasper Department of Chemical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA

Abstract

The cyclic injection of CO2, referred to as the huff-n-puff (HnP) method, is an attractive option to improve oil recovery from unconventional reservoirs. This study evaluates the optimization of the CO2 HnP method and provides insight into the aspects of CO2 sequestration for unconventional reservoirs. Furthermore, this study also examines the impact of nanopore confinement, fluid composition, injection solvent, diffusivity parameters, and fracture properties on the long-term recovery factor. The results from over 500 independent simulations showed that the optimal recovery is obtained for the puff-to-huff ratio of around 2.73 with a soak period of fewer than 2.7 days. After numerous HnP cycles, an optimized CO2 HnP process resulted in about 970-to-1067-ton CO2 storage per fracture and over 32% recovery, compared to 22% recovery for natural depletion over the 30 years. The optimized CO2 HnP process also showed higher effectiveness compared to the N2 HnP scenario. Additionally, for reservoirs with significant pore confinement (pore size ≤ 10 nm), the oil recovery improved by over 3% compared to the unconfined bulk phase properties. We also observed over 300% improvement in recovery factor for a fluid with a significant fraction of light hydrocarbons (C1–C6), compared to just a 50% improvement in recovery for a fluid with a substantial fraction of heavy hydrocarbons (C7+). Finally, the results also showed that fracture properties are much more important for CO2 HnP than natural depletion. This study provides critical insights to optimize and improve CO2 HnP operations for different fluid phases and fracture properties encountered in unconventional reservoirs.

Funder

American Chemical Society Petroleum Research Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3